Publications
Journal Papers:原著論文
- Rio Tomioka and Masanori Takabayashi, "Numerical simulations on optoelectronic deep neural network hardware based on self-referential holography" Optical Review, 30, pp. 387–396, (Apr. 2023). https://doi.org/10.1007/s10043-023-00810-2
(SharedIt link (full text, view only): https://rdcu.be/daZfo )
招待論文
- 髙林 正典, 冨岡 莉生, “自己参照型ホログラフィの原理を用いた光電子深層ニューラルネットワークハードウェア,” フォトニクスニュース 9, No. 3, pp. 147-151 (2024年3月).
International Conference:国際会議・研究会
- Yuta Eto, Rio Tomioka, Taichi Takatsu and Masanori Takabayashi, "Self-referential holographic data storage with integrated denoising function by deep learning", International Symposium on Imaging, Sensing, and Optical Memory 2024 (2024).
- Taichi Takatsu, Rio Tomioka and Masanori Takabayashi, "Numerical Simulations of Optoelectronic Deep Neural Network Using Trainable Activation Function", International Symposium on Imaging, Sensing, and Optical Memory 2024 (2024). [poster]
- Rio Tomioka, Taichi Takatsu, and Masanori Takabayashi, "Numerical simulations on image recognition by self-referential holographic deep neural network with electronic output layer", 14th International Conference on Optics-Photonics Design and Fabrication (2024).[poster]
- Taichi Takatsu, Rio Tomioka, and Masanori Takabayashi, "Numerical analysis on contributions of individual layers in self-referential holographic deep neural network", 14th International Conference on Optics-Photonics Design and Fabrication (2024). [poster]
- Rio Tomioka, Taichi Takatsu, and Masanori Takabayashi, "Numerical simulation on wavefront transformation using self-referential holographic deep neural network", Program and proceedings the 5th International Symposium on Neuromorphic AI Hardware, O3-04/P1-22, p. 14 (Mar. 2024)
- Taichi Takatsu, Rio Tomioka, and Masanori Takabayashi, "Efficient training method using transmission matrix for optoelectronic deep neural network", Program and proceedings the 5th International Symposium on Neuromorphic AI Hardware, P1-12, p. 25 (Mar. 2024) [poster]
- Rio Tomioka and Masanori Takabayashi, “Numerical simulation on phase-to-intensity conversion by self-referential holographic deep neural network,” The 13th Japan-Korea Workshop on Digital Holography and Information Photonics (DHIP2023) proceeding, p. 54 (Dec. 2023). [poster, not-reviewed].
- Rio Tomioka and Masanori Takabayashi, "Self-referential holographic deep neural network with single spatial light modulator," Program and proceedings the 4th International Symposium on Neuromorphic AI Hardware, P2-2, p. 35 (Dec. 2022). [poster]
- Masanori Takabayashi, Rio Tomioka, Kaito Inoue, and Atsushi Shibukawa, "Numerical Simulations of Optoelectronic AI Hardware using Transmission Matrix of Real Object," Program and proceedings the 4th International Symposium on Neuromorphic AI Hardware, S-4, p. 7(Dec. 2022).
- Rio Tomioka and Masanori Takabayashi, "Dependence of activation function on image recognition accuracy in self-referential holographic deep neural network," International Symposium on Imaging, Sensing, and Optical Memory (ISOM’22) Technical Digest, No. ITuPJ-01, 2pages (Jul. 2022).
- Rio Tomioka and Masanori Takabayashi, "Self-referential holographic neural network with electronically implemented nonlinear layer," the 3rd International Symposium on Neuromorphic AI Hardware abstracts, P-AM8, p. 17 (Dec. 2022). [poster]
- Masanori Takabayashi, Sae Isayama, and Rio Tomioka, "Hyperparameter tuning for accurate image classification using self-referential holographic neural network," International Workshop on Holography and Related Technologies (IWH 2021) Technical Digest, 11-P08 (Mar. 2022).
- Rio Tomioka and Masanori Takabayashi, "Numerical simulations of neural network hardware based on self-referential holography," International Symposium on Imaging, Sensing, and Optical Memory (ISOM’21) Technical Digest, We-A-02, pp.123-124 (Oct. 2021).
Domestic Conference:国内学会・研究会
- 冨岡莉生,高津太一,高林正典,”空間光変調に基づく複素深層ニューラルネットワーク”, 「光の極限性能を生かすフォトニックコンピューティングの創成」第2回公開シンポジウム:Photonics for Computing & Computing for Photonics,2024年12月.(ポスター,査読無し)
- 江藤優太,冨岡莉生,高津太一,髙林正典,"深層学習に基づく再生データページのデノイズ機能を内在する 自己参照型ホログラフィックメモリ ~ 学習用データセットの生成法に関する検討 ~", マルチメディアストレージ研究会,2024年12月.(査読無し)
- 山崎駆, 山口健太, 冨岡莉生, 梶谷柊, 高津太一, 根崎翔, 井上快斗, 岸田隆之, 井上創造, 柴田智広, "訪問地事前体験のための仮想空間アプリケーションの開発及び実証実験", 第7回福祉工学会九州支部大会, P1-3, pp.30-31, 2022年12月.(査読無し)
- 山崎駆, 山口健太, 冨岡莉生, 梶谷柊, 高津太一, 根崎翔, 井上快斗, 岸田隆之, 井上創造, 柴田智広, "仮想空間アプリケーションを利用した訪問地の事前体験と高齢化社会への適用", 第25回ASD研究会, 2022-ASD-25-6, 4pages, 2022年12月.(査読無し)
- 冨岡莉生, 高林正典, “自己参照型ホログラフィックニューラルネットワークにおける透過行列を用いた学習過程の改善,” 映情学技報, vol. 46, no. 6, MMS2022-12, pp. 61-66, 2022年2月.(査読無し)
Unclassified:未分類
Rio Tomioka and Masanori Takabayashi, "Numerical simulation of deep reinforcement learning using self- referential holographic deep neural network", International Workshop on Holography and Related Technologies 2024, S5-2, 2pages (Dec. 2024). [not-reviewed, link]
Taichi Takatsu, Rio Tomioka, Masanori Takabayashi, "Numerical simulations of efficient training method on optoelectronic deep neural network using transmission matrix", Materials Meet Robots 2024, (2024) [poster, not-reviewed, link]
Rio Tomioka, Taichi Takatsu, Kaito Inoue, Atsushi Shibukawa, and Masanori Takabayashi, "Numerical simulations on complex-valued optoelectronic deep neural network", The First International Symposium on Photonic Computing, A03-2, March 2024. [poster, not-reviewed, link]
冨岡莉生, 高林正典, "複素振幅分布を入出力とする光電子融合型深層ニューラルネットワークハードウェアにおける複素活性化関数の影響", 光の極限性能を生かすフォトニックコンピューティング 第三回領域会議, 2023年8月. [poster, not-reviewed, link]
冨岡莉生, 高林正典, "自己参照型ホログラフィックメモリの光学系を用いたニューラルネットワークハードウェア", 情報フォトニクス研究討論会2023, 2023年7月. [poster, not-reviewed, link]
冨岡莉生, "自己参照型ホログラフィの原理に基づく光電子融合型ニューラルネットワークハードウェア", 第2回光ニューロワークショップ, 2022年3月. [not-reviewed, link]